카테고리 없음

아미노산

마태복음 2024. 9. 24. 11:56
728x90
분자생물학·생화학
Molecular Biology · Biochemistry
[ 펼치기 · 접기 ]
 
[ 펼치기 · 접기 ]
 


1. 개요2. 종류
2.1. 구성 아미노산
2.1.1. 필수 아미노산2.1.2. 극성 및 산성, 염기성을 통한 구분
2.2. 비단백 아미노산
3. 섭취 방법4. 생체 내 대사5. 화학 구조6. 목록7. 기타8. 관련 문서

1. 개요[편집]

보통 아미노산이라고 하면 단백질을 구성하는 기본적인 성분들이라고 보면 된다.[1] 그러나 단백질의 구성 요소가 아닌 비단백 아미노산이라는 것도 존재한다.

조직의 성장과 유지에 관여한다. 또한 호르몬 효소, 항체 등의 주요 구성성분이 된다. 각기 고유의 기능을 가지고 있다. 부족하면 성장기 어린이의 성장 지연과 성인의 체중 감소를 유발하고 인체 대사 조절에 영향을 미칠 수 있다.

식물 광합성 과정에서 합성하고, 동물은 다른 식물이나 동물을 먹어서 얻는다. 구성 원자 중에 질소가 들어가 있는데 식물은 공기 중의 질소 분자를 사용하지는 못한다.[2] 그래서 일부 질소 고정 세균류[3]가 합성하는 암모늄, 질산염, 아질산염 등을 흡수해 사용한다. 그 외에도 번개가 칠 때도 질산염이 합성[4]되며 인간이 만드는 배기 가스에도 질소화합물이 섞여 있다.

우리  필수 영양소 단백질을 음식 속에서 감지해내기 위해 아미노산을 인식하고 뇌는 우리가 단백질을 섭취하도록 유도하기 때문에, 이게 들어간 것은 대개 맛이 괜찮다.[5] 아미노산계 조미료인 MSG가 대표적. 이래서 그런지 식품첨가물로 많이 들어간다.

2. 종류[편집]

단백질을 구성하는 구성 아미노산은 두 종류로 분류할 수 있는데, 체내 합성이 불가능하거나 충분히 합성되지 못하는 필수 아미노산과 체내 합성이 충분히 가능한 비필수 아미노산으로 나뉜다. 비필수 아미노산은 또 다시 불필수 아미노산과 조건적 필수 아미노산으로 나뉘어진다. 조건적 필수 아미노산은 특정 상황에서는 체내 합성이 제한되어 경우에 따라 필수 아미노산이 되기도 하는 아미노산을 뜻한다.

단백질을 이루지 않는 아미노산은 비단백 아미노산이라고 한다.
  • 구성 아미노산(20종)
    • 필수 아미노산(9종)
    • 비필수 아미노산(11종)
      • 불필수 아미노산(5종)
      • 조건적 필수 아미노산(6종)
  • 비단백 아미노산

2.1. 구성 아미노산[편집]

아미노산의 이름들은 영어 이름의 일부를 따서 3글자로 축약하나, 현대에는 더 줄여서 1글자로 나타내기도 한다.[6]
Amino Acid / 아미노산
3-Letter
1-Letter
Alanine / 알라닌
Ala
A
Arginine / 아르지닌
Arg
R
Asparagine / 아스파라진
Asn
N
Aspartic acid / 아스파트산
Asp
D
Cysteine / 시스테인
Cys
C
Glutamic acid / 글루탐산
Glu
E
Glutamine / 글루타민
Gln
Q
Glycine / 글리신
Gly
G
Histidine / 히스티딘
His
H
Isoleucine / 아이소류신
Ile
I
Leucine / 류신
Leu
L
Lysine / 라이신
Lys
K
Methionine / 메싸이오닌
Met
M
Phenylalanine / 페닐알라닌
Phe
F
Proline / 프롤린
Pro
P
Serine / 세린
Ser
S
Threonine / 트레오닌
Thr
T
Tryptophan / 트립토판
Trp
W
Tyrosine / 타이로신
Tyr
Y
Valine / 발린
Val
V
→ 두 번째 염기
 
↓ 첫 번째 염기(5' 말단)
U
C
A
G
↓ 세 번째 염기
U
UUU Phe
UUC Phe
UUA Leu
UUG Leu
UCU Ser
UCC Ser
UCA Ser
UCG Ser
UAU Tyr
UAC Tyr
UAA Stop
UAG Stop
UGU Cys
UGC Cys
UGA Stop
UGG Trp
U
C
A
G
C
CUU Leu
CUC Leu
CUA Leu
CUG Leu
CCU Pro
CCC Pro
CCA Pro
CCG Pro
CAU His
CAC His
CAA Gln
CAG Gln
CGU Arg
CGC Arg
CGA Arg
CGG Arg
U
C
A
G
A
AUU Ile
AUC Ile
AUA Ile
AUG Met
ACU Thr
ACC Thr
ACA Thr
ACG Thr
AAU Asn
AAC Asn
AAA Lys
AAG Lys
AGU Ser
AGC Ser
AGA Arg
AGG Arg
U
C
A
G
G
GUU Val
GUC Val
GUA Val
GUG Val
GCU Ala
GCC Ala
GCA Ala
GCG Ala
GAU Asp
GAC Asp
GAA Glu
GAG Glu
GGU Gly
GGC Gly
GGA Gly
GGG Gly
U
C
A
G
필수 아미노산은 음식을 통해 직접 먹어야 하는 아미노산이다. 비필수 아미노산 중 불필수 아미노산은 체내 합성이 용이한 것을 말하고, 조건적 필수 아미노산은 몸이 정상적인 상태라면 체내 합성이 되지만, 비정상인 상태일 경우 체내 합성이 어려운 것이다.

신체에서 필요한 아미노산은 일반적으로 다른 아미노산으로부터 합성이 가능하다. 단, 필수 아미노산은 신체에서 합성하려면 매우 복잡한 단계를 거쳐야 하거나 합성이 불가능한 것도 있기 때문에 반드시 음식물 등으로 섭취해야 한다. 안 그러면 죽는다.

필수 아미노산은 발린, 류신, 이소류신, 메티오닌, 트레오닌, 라이신, 페닐알라닌, 트립토판의 8종류가 있다. 어린이의 경우 히스티딘 아르기닌도 필수 아미노산에 추가로 포함된다. 고양이는 타우린이 필수 아미노산에 추가로 포함된다.

사람은 일반적으로 필수 아미노산은 모두 구성 아미노산이지만, 동물은 비단백 아미노산이 필수 아미노산인 경우가 있다. 대표적으로 타우린은 비단백 아미노산이지만 고양이에게는 필수 아미노산이다.
  자세한 내용은 필수아미노산 문서
 참고하십시오.

2.1.2. 극성 및 산성, 염기성을 통한 구분[편집]

2.2. 비단백 아미노산[편집]

비단백 아미노산은 단백질을 이루지는 않지만, 신체 내에서 신호전달물질 혹은 생합성이나 분해 경로 등에 쓰이는 아미노산을 뜻한다. 셀레노메티오닌, 셀레노시스테인, 피롤라이신, GABA, 오르니틴, 시트룰린 등이 있다.

3. 섭취 방법[편집]

아미노산은 단백질의 분해산물로서 단백질이 풍부한 식사를 통해 섭취할 수 있으나, 식품의 종류에 따라 단백질을 구성하고 있는 아미노산 종류와 함량이 다르다.

필수아미노산 중 메티오닌은 달걀, 치즈, 닭고기, 생선, 소고기 등에, 류신, 이소류신, 발린은 육류 및 근육류 식품에 많이 함유되어 있다. 라이신은 소고기와 가금류에 많이 들어 있으며, 페닐알라닌 달걀, 닭고기, , 소고기에 많이 들어 있다. 트레오닌 치즈, 가금류, 어류, 육류 등이, 트립토판은 고단백 식품과 유제품이 좋은 급원이고, 히스티딘도 다른 아미노산과 마찬가지로 육류, 가금류, 생선 등이 주요 급원식품이다.[8]

개개의 아미노산을 보충제의 형태로 섭취하는 것은 아미노산 간의 흡수 경쟁을 유발하여 아미노산 불균형 및 독성 위험을 증가시킬 수 있다.[9]

쇠고기, 닭고기, 유제품 등에 많이 들어있는 유황 함유 아미노산을 지나치게 섭취하면 심혈관 질환과 사망 위험이 높아질 수 있다는 연구 결과가 나왔다.#

4. 생체 내 대사[편집]

  자세한 내용은 아미노산 대사 문서
 참고하십시오.

5. 화학 구조[편집]

아미노산이라는 이름에서 알 수 있듯, 아미노기(-NH2)와 카복실기(-COOH)기를 모두 가진 분자를 지칭하며, 일반적으로는 두 작용기가 하나의 탄소에 붙어있는 알파-아미노산(HOOC-CH(R)-NH2)을 일컫는다[10]. 때문에 양쪽성 이온[11]이다. 아미노산의 아미노기(-NH2)와 카복실기(-COOH)가 탈수 축합반응을 통해 중합하여 잔뜩 연결된 것이 단백질이며, 이러한 결합(R-C(=O)NHR')을 펩타이드 결합이라 한다. 대충 20가지 종류 정도의 아미노산이 생명체의 기본 구조를 형성하며, 일부 좀 이상하게 생긴 녀석들[12]이 가끔 추가된다. 단, 아미노산이 모두 단백질의 구성 요소인 것은 아니며 단백질을 구성하지 않는 아미노산은 비단백 아미노산이라고 불린다. GABA가 체내에 존재하는 대표적인 비단백 아미노산 중 하나이다. 이렇게 20종류 이외의 아미노산이 존재하지 않는 이유는 폴리펩타이드 사슬을 공격해 구조적 불안정성을 야기하거나, 대사경로에서의 효율성이 떨어지기 때문이다. 생명 탄생 초창기에는 이보다 더 많은 아미노산을 쓰는 생명체가 있었을지도 모른다.

이와 같이 proteogenic α-amino acid가 20종류밖에 존재하지 않는 이유는 밝혀지지 않았으며, 생명과학 기술을 통해 인공적으로 다른 아미노산을 사용하도록 하더라도 별 문제가 생기지 않는다. 일례로 stop codon을 coding하거나[13] four-base codon을 이용해[14] 단백질에 비천연 아미노산을 도입한 다수의 연구가 존재한다[15].

이에 대한 이유를 설명하는 흥미로운 가설로 산화 저항성에 관한 것이 있다. 현존하는 단백질의 구조적 특징 대부분은 7-13개의 아미노산만으로 구현 가능하다는 것이 알려져 있으며[16][17], 인공적으로 적은 수의 아미노산만을 이용해 단백질을 engineering하더라도 그 기능이 그대로 유지될 수 있음을 보고하는 연구도 존재한다[18]. 이때 비교적 후기에 진화되었으며, 단백질 생산에 비필수적인 아미노산들은 공통적으로[19] 산화되기 쉬워[20] 산소가 풍부했던 과거의 지구 환경에서 세포의 산화 스트레스를 줄임으로써 생존을 도왔을 것이라는 가설을 제시했다. 다만 해당 가설이 널리 합의된 것은 아님을 유의해야 하며, 자세한 내용은 원문[21] 참고.

가장 간단한 아미노산인 카밤산[22] 글리신[23]을 빼면 모든 아미노산에서 카이랄 탄소가 입체이성질 중심으로 비대칭성을 갖기 때문에, 연결되는 방법에 따라 L형태와 D형태로 나뉜다. (명명법이 좀 여러 가지인데, 시계-반시계방향으로 분자를 돌려서 R/S로 명명하는 법, 통과한 빛이 돌아가는 방향에 따라 d/s로 명명하는 법, 기준 분자인 글리세랄데하이드에 비교해서 D/L로 명명하는 법이 있다.) 생명체의 단백질을 형성하는 아미노산은 거의 모두 L형태이다.[24] 반대로 생명체가 사용하는 탄수화물의 구성요소들은 전부 D형태이다. 우주 어딘가에 이게 거꾸로 된 생태계가 있을지도 모르며, 반물질로 생성된 반생명체보다는 가능성이 높을지도 모른다.

아미노산 중에 방향족 곁사슬을 가진 것으로는 티로신, 트립토판, 페닐알라닌, 히스티딘이 있다. 이 중 트립토판(인돌 고리)과 히스티딘(이미다졸 고리)은 질소가 방향족에 포함되는 헤테로고리 방향족이다.

아미노'산'이지만 정작 진짜 액성이 산성인 것은 곁사슬에 카복실기를 가지고 있는 글루탐산 아스파르트산 둘뿐이며, 아르기닌, 라이신, 히스티딘은 아예 정반대의 액성을 띤다.

6. 목록[편집]

※ 필수 아미노산 8종은 ★로 표기. 단백질 생성 아미노산 20종은 ○로 표기.

인류의 필수 아미노산: 이소류신, 류신, 라이신, 메티오신, 페닐알라닌, 트레오닌, 트립토판, 발린, (아르기닌, 히스티딘)

7. 기타[편집]

  • 아미노산의 어원은 놀랍게도 이집트 신화의 신인 아문이다. '암몬의 소금'이라는 별명의 염화암모늄에서 암모니아가 파생되었고, 여기서 또 파생되어 나간 개념이 아미노산이기 때문.

8. 관련 문서[편집]